Lyapunov-type inequalities for fractional Langevin-type equations involving Caputo-Hadamard fractional derivative

نویسندگان

چکیده

Abstract In this study, some new Lyapunov-type inequalities are presented for Caputo-Hadamard fractional Langevin-type equations of the forms $$ \begin{aligned} &{}_{H}^{C}D_{a + }^{\beta } \bigl({}_{H}^{C}D_{a }^{\alpha }+ p(t)\bigr)x(t) q(t)x(t) = 0,\quad 0 < a t b, \end{aligned} D a + β H C ( α p t ) x q = 0 , < b and }^{\eta }{ \phi _{p}}\bigl[\bigl({}_{H}^{C}D_{a }^{\gamma u(t)\bigr)x(t)\bigr] v(t){\phi _{p}}\bigl(x(t)\bigr) η ϕ [ γ u ] v subject to mixed boundary conditions, respectively, where $p(t)$ , $q(t)$ $u(t)$ $v(t)$ real-valued functions $0 \beta 1 \alpha 2$ 1 2 $1 \gamma $ $\eta ${\phi _{p}}(s) |s{|^{p - 2}}s$ s | − $p > 1$ > . The value problems were firstly converted into equivalent integral with corresponding kernel functions, then derived by analytical method. Noteworthy, multi-term differential equations, creating significant challenges difficulties in investigating problems. Consequently, study provides results that can enrich existing literature on topic.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Problems Involving a Caputo-Type Fractional Derivative

We study calculus of variations problems, where the Lagrange function depends on the Caputo-Katugampola fractional derivative. This type of fractional operator is a generalization of the Caputo and the Caputo–Hadamard fractional derivatives, with dependence on a real parameter ρ. We present sufficient and necessary conditions of first and second order to determine the extremizers of a functiona...

متن کامل

Generalized Hermite-Hadamard type inequalities involving fractional integral operators

In this article, a new general integral identity involving generalized fractional integral operators is established. With the help of this identity new Hermite-Hadamard type inequalities are obtained for functions whose absolute values of derivatives are convex. As a consequence, the main results of this paper generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liou...

متن کامل

On Hadamard and Fej'{e}r-Hadamard inequalities for Caputo $small{k}$-fractional derivatives

In this paper we will prove certain Hadamard and Fejer-Hadamard inequalities for the functions whose nth derivatives are convex by using Caputo k-fractional derivatives. These results have some relationship with inequalities for Caputo fractional derivatives.

متن کامل

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

Some Discrete Fractional Lyapunov–type Inequalities

In this work we obtain Lyapunov-type inequalities for two-point conjugate and rightfocal boundary value problems depending on discrete fractional operators Δα , 1 < α 2 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2022

ISSN: ['1025-5834', '1029-242X']

DOI: https://doi.org/10.1186/s13660-022-02783-3